Institut fir Biologësch Landwirtschaft

an Agrarkultur Luxemburg a.s.b.l.

N₂-Fixierung von Winterkörnerleguminosen:

Abhängigkeit von Bodengüte und Gemengeanbau mit Triticale bei temporärer Direktsaat

Altmann Gilles
7. Leguminosentag
Ettelbruck, 2. März 2018

Masterarbeit im Studiengang Nutzpflanzenwissenschaften

Prof. Dr. Ulrich Köpke Dr. Martin Berg

Rheinische Friedrich-Wilhelms-Universität Bonn

GLIEDERUNG

- Anbau von Körnerleguminosen
- Gemengeanbau
- Material und Methoden
- Ergebnisse
- Fazit

ANBAU VON KÖRNERLEGUMINOSEN

Vorteile für den Betrieb

- Steigerung der Bodenfruchtbarkeit
- Stickstoffeintrag in Betriebskreislauf
- Auflockerung der Fruchtfolge
- wertvolles heimisches Eiweiß für hohe Leistungen in der Tierhaltung
- Abkopplung von Sojaimporten

Foto: IBLA

ANBAU VON KÖRNERLEGUMINOSEN

Problematik bei Reinsaaten

- Verlust an Diversität
- Geringe Standfestigkeit (v.A. Erbse)
- Schwache Konkurrenz ggü. Unkraut in Jugendphase
- Gefahr der Spätverunkrautung
- Ertragsrisiko

GEMENGEANBAU

→ Alternative: **Anbau im Gemenge**

Ein **Gemenge** besteht aus zwei oder mehreren Feldfrüchten, die zur gleichen Zeit auf einer Fläche angebaut werden.

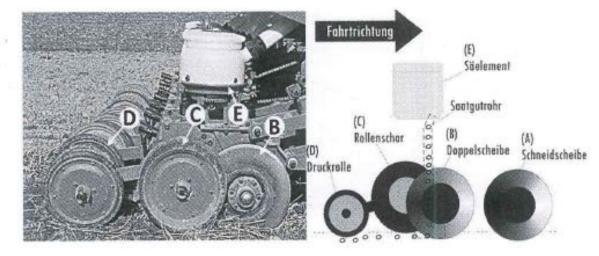
GEMENGEANBAU

Eigenschaften von Gemengen

- Potentiell höhere Erträge als in Reinsaat
- Ertragsstabilität
- Ertragsqualität
- Effizientere Ausnutzung von Wachstumsfaktoren (Licht, Nährstoffe, Wasser)
- Erhöhung der Biodiversität
- Abwehr von Krankheiten und Schädlingen
- Unkrautunterdrückung
- Minderung von Nährstoffverlusten
- Erhöhung der Standfestigkeit durch Stützwirkung

www.oekolandbau.de

Material und Methoden


Versuchsstandort

- Versuchsbetrieb für organischen Landbau "Wiesengut" der Universität Bonn
- lehmig-schluffige bis sandig-schluffige Auenböden
- Mächtigkeit und Korngrößenzusammensetzung variiert
- unregelmäßig mit Kiesköpfen durchsetzt

Aussaat mit Direktsaatmaschine

| www.ibla.lu |

DIREKTSAAT

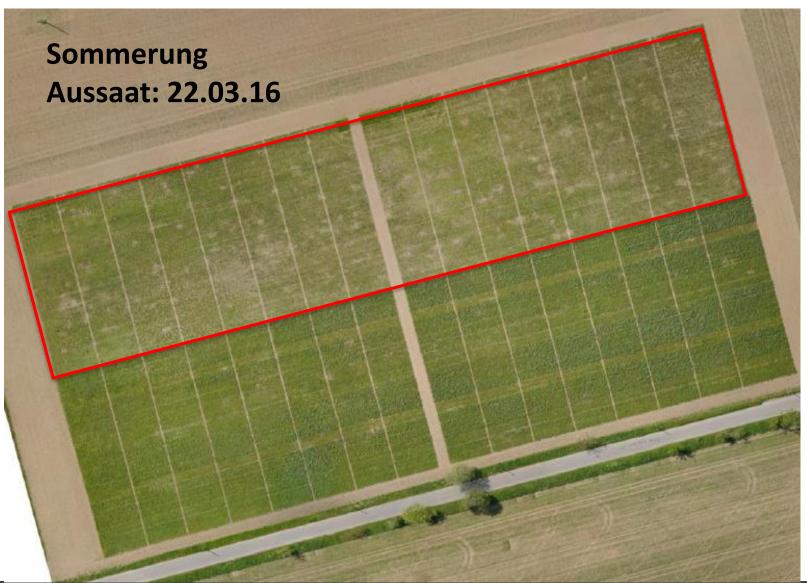
Vorteile:

- Förderung und Schutz des Bodenlebens
- Humusaufbau
- Erhöhte Wasserinfiltration durch Bioporen
- Erosionsschutz
- Aufbau und Erhalt eines stabilen Bodengefüges
- Reduzierung von Bodenschadverdichtungen
- Beikrautunterdrückung durch Mulchauflage
- Reduzierter Kraftstoffverbrauch
- Senkung der CO₂-Emissionen

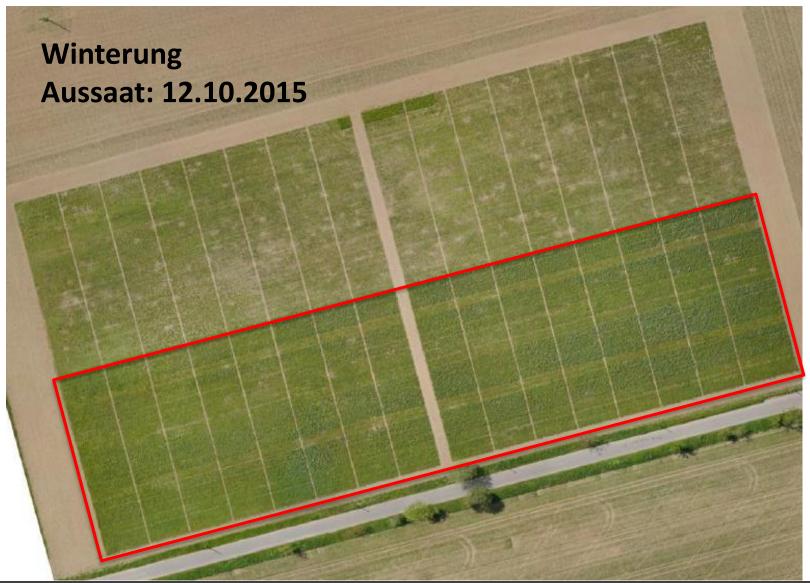
Quelle: Upload.wikimedia.org

DIREKTSAAT

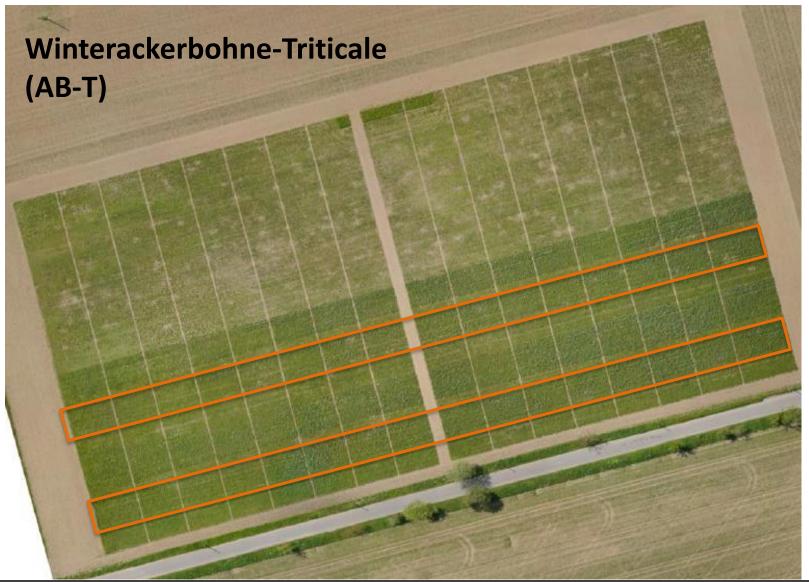
Nachteile:

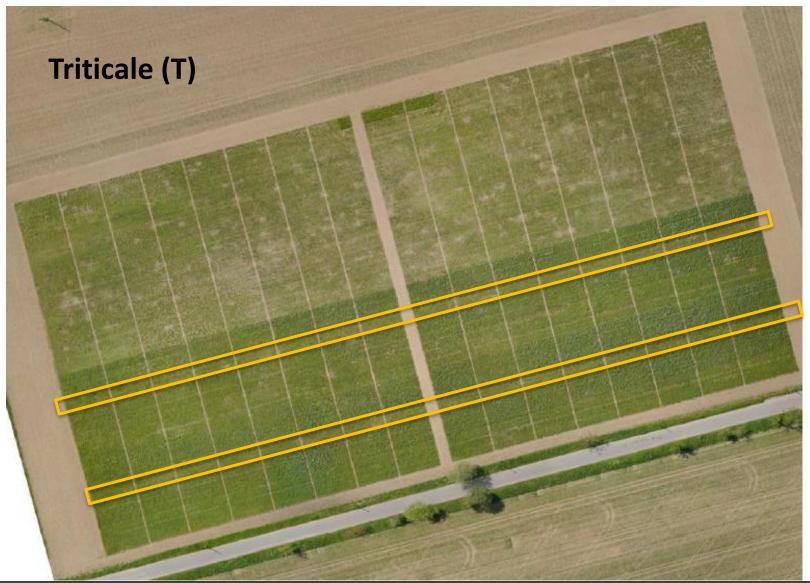

- Erhöhter Unkrautdruck
- Verzögerte Erwärmung des Bodens
- Verminderte Mineralisierung und Nitrifikation bodenbürtigen Stickstoffs
- Langsamere Pflanzenentwicklung
- Mögliche Erhöhung des

Schädlings- und Krankheitsdrucks



Quelle: www.bioaktuell.ch





- Zeiternte am 4. Juli 2016
 - Entnahme der Pflanzen auf 1 m² / Parzelle per Hand
 - Auftrennung in Bestandteile Leguminose, Triticale, Beikraut
 - Bestimmung von FM und TM
 - Analyse auf Stickstoffgehalt
- Endernte am 8. August 2016
 - Entnahme der Pflanzen auf 1 m² / Parzelle per Hand
 - Ausdreschen von Hülsen und Ähren
 - Bestimmung des TKG
 - Dreschen der Gesamtparzellen

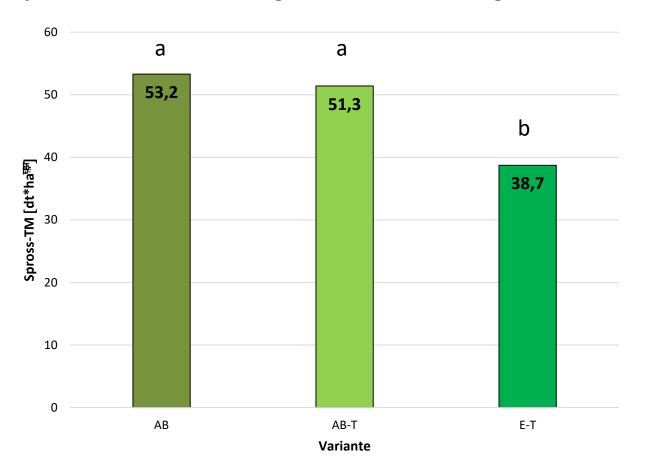
Quelle: eigene Fotos

Schätzung der N₂-Fixierungsleistung

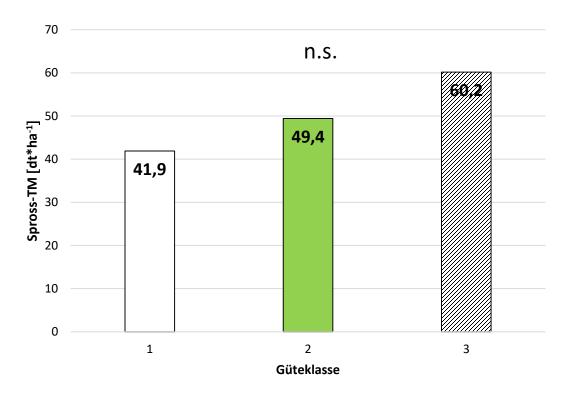
1) Reinsaat: $N_{Fix} = (N_{Leg} + Boden - N_{Leg}) - (N_{Ref} + Boden - N_{Ref})$

2) Gemenge:
$$N_{Fix-Gem} = [(N_{Leg-Gem} + N_{T-Gem}) + Boden-N_{Gem}] - (N_{Ref} + Boden-N_{Ref})$$

(Stülpnagel, 1982; Kießling, 2011)



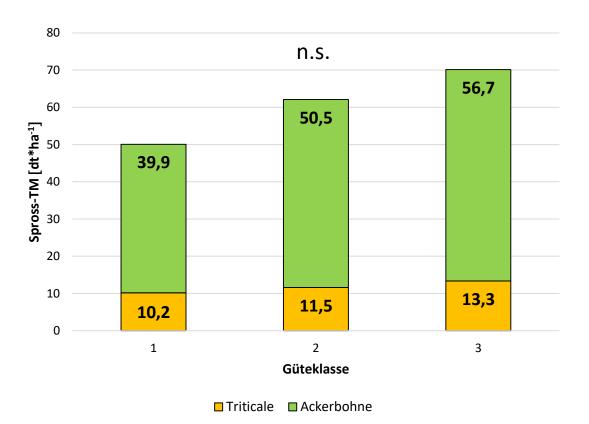
Ergebnisse


Spross-Trockenmasseerträge der Winterkörnerleguminosen

Spross-Trockenmasseerträge nach Tiefgründigkeit des Bodens

Winterackerbohne Reinsaat

Klasse 1: 0-50 cm

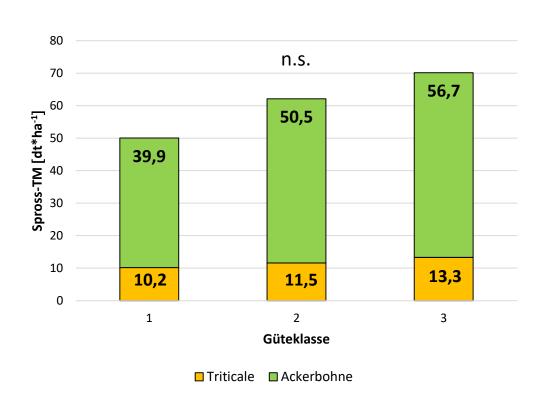

Klasse 2: 50-90 cm

Klasse 3: > 90 cm

Spross-Trockenmasseerträge nach Tiefgründigkeit des Bodens

Winterackerbohne-Triticale

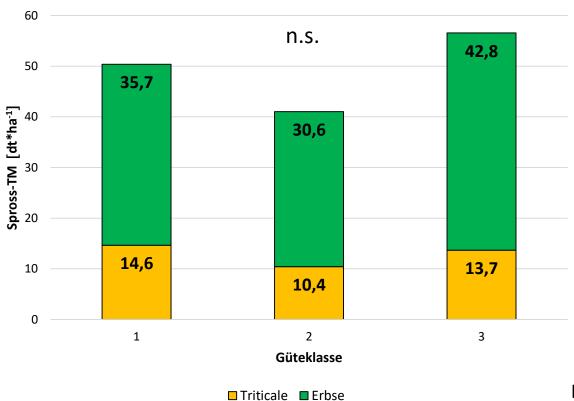
Klasse 1: 0-50 cm


Klasse 2: 50-90 cm

Klasse 3: > 90 cm

Spross-Trockenmasseerträge nach Tiefgründigkeit des Bodens

Winterackerbohne-Triticale


Anteile an Spross-TM Ertrag:

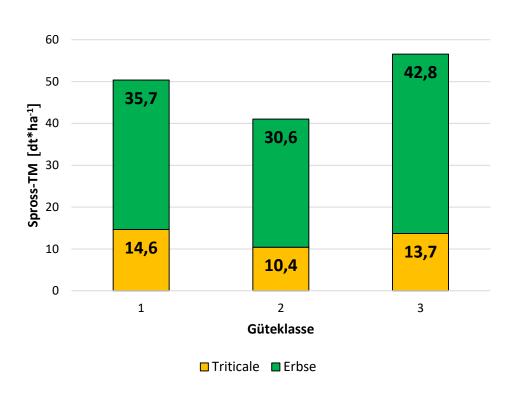
• Ackerbohne: +- 80 %

• Triticale: +- 20 %

Spross-Trockenmasseerträge nach Tiefgründigkeit des Bodens

Wintererbse-Triticale

Klasse 1: 0-50 cm


Klasse 2: 50-90 cm

Klasse 3: > 90 cm

Spross-Trockenmasseerträge nach Tiefgründigkeit des Bodens

Wintererbse-Triticale

Anteile an Spross-TM Ertrag:

• Erbse: 71 % → 75%

• Triticale: 29 % → 25 %

Variante	Triebe*m ⁻²	Hülsen/Trieb	Körner/Hülse	TKG (g)	KE (dt*ha ⁻¹)
АВ	36 a	6 a	3 a	338 a	18 a
AB-T	28 a	7 a	2 a	348 a	16 a
E-T	-	-	-	95	-

Variante	Triebe*m ⁻²	Hülsen/Trieb	Körner/Hülse	TKG (g)	KE (dt*ha ⁻¹)
AB	36 a	6 a	3 a	338 a	18 a
AB-T	28 a	7 a	2 a	348 a	16 a
E-T	-	-	-	95	-

Variante	Triebe*m ⁻²	Hülsen/Trieb	Körner/Hülse	TKG (g)	KE (dt*ha ⁻¹)
AB	36 a	6 a	3 a	338 a	18 a
AB-T	28 a 7 a		2 a	348 a	16 a
E-T	E-T -		-	95	-

Variante	Triebe*m ⁻²	Hülsen/Trieb	Körner/Hülse	TKG (g)	KE (dt*ha ⁻¹)
АВ	36 a	6 a	3 a	338 a	18 a
AB-T	28 a	7 a	2 a	348 a	16 a
E-T	-	-	-	95	-

Variante	Triebe*m ⁻²	Hülsen/Trieb	Körner/Hülse	TKG (g)	KE (dt*ha ⁻¹)
АВ	36 a	6 a	3 a	338 a	18 a
AB-T	28 a	7 a	2 a	348 a	16 a
E-T	-	-	-	95	-

Ertragsparameter von Wintererbsen nach Tiefgründigkeit des Bodens

Klasse	TKG (g)	KE (dt*ha ⁻¹)
1	94,21 a	4,34 a
2	98,72 a	6,08 a
3	93,65 a	5,92 a

Klasse 1: 0-50 cm

Klasse 2: 50-90 cm

Klasse 3: > 90 cm

Ertragsparameter von Wintererbsen nach Tiefgründigkeit des Bodens

			_
Klasse	TKG (g)	KE (dt*ha)	
1	94,21 a	4,34 a	
2	98,72 a	6,08 a	
3	93,65 a	5,92 a	

Klasse 1: 0-50 cm

Klasse 2: 50-90 cm

Klasse 3: > 90 cm

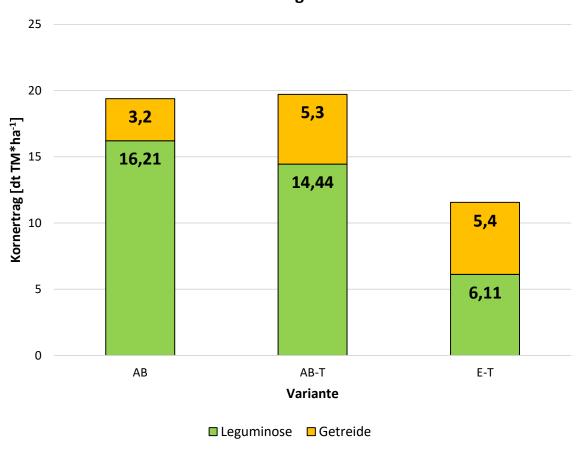
Ertragsparameter von Ackerbohnen nach Tiefgründigkeit des Bodens

	TKG (g)		Trieb	e*m ⁻²	Hülsen	*Trieb ⁻¹	Körner	*Hülse ⁻¹	KE (d	lt*ha ⁻¹)
				Variante						
Klasse	АВ	AB-T	АВ	АВ-Т	АВ	AB-T	АВ	AB-T	АВ	AB-T
1	319,4 a	348,8 a	36,2 a	29,6 a	6,1 a	6,2 a	2,3 a	2,2 a	14,9 a	14,0 a
2	362,3 a	360,4 a	35,9 a	27,0 a	5,2 a	6,5 a	2,6 a	2,5 a	17,7 a	15,2 a
3	324,4 a	343,6 a	36,3 a	28,3 a	6,4 a	7,4 a	2,6 a	2,5 a	19,0 a	17,9 a

	TKG (g)		Triebe*m ⁻²		Hülsen*Trieb ⁻¹		Körner*Hülse ⁻¹		KE (dt*ha ⁻¹)	
					Variante	ı				
Klasse	АВ	AB-T	АВ	АВ-Т	АВ	AB-T	АВ	AB-T	AB	AB-T
1	319,4 a	348,8 a	36,2 a	29,6 a	6,1 a	6,2 a	2,3 a	2,2 a	14,9 a	14,0 a
2	362,3 a	360,4 a	35,9 a	27,0 a	5,2 a	6,5 a	2,6 a	2,5 a	17,7 a	15,2 a
3	324,4 a	343,6 a	36,3 a	28,3 a	6,4 a	7,4 a	2,6 a	2,5 a	19,0 a	17,9 a

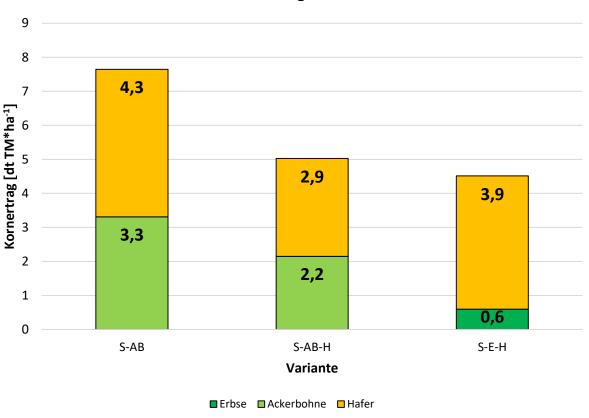
				Hülsen*Trieb ⁻¹ Variante				KE (dt*ha ⁻¹)	
AB	AB-T	АВ	АВ-Т	АВ	АВ-Т	AB	AB-T	AB	АВ-Т
319,4 a	348,8 a	36,2 a	29,6 a	6,1 a	6,2 a	2,3 a	2,2 a	14,9 a	14,0 a
362,3 a	360,4 a	35,9 a	27,0 a	5,2 a	6,5 a	2,6 a	2,5 a	17,7 a	15,2 a
324,4 a	343,6 a	36,3 a	28,3 a	6,4 a	7,4 a	2,6 a	2,5 a	19,0 a	17,9 a
3	19,4 a 62,3 a	19,4 a 348,8 a 62,3 a 360,4 a	19,4 a 348,8 a 36,2 a 62,3 a 360,4 a 35,9 a	19,4 a 348,8 a 36,2 a 29,6 a 62,3 a 360,4 a 35,9 a 27,0 a	19,4 a 348,8 a 36,2 a 29,6 a 6,1 a 62,3 a 360,4 a 35,9 a 27,0 a 5,2 a	19,4 a 348,8 a 36,2 a 29,6 a 6,1 a 6,2 a 62,3 a 360,4 a 35,9 a 27,0 a 5,2 a 6,5 a	19,4 a 348,8 a 36,2 a 29,6 a 6,1 a 6,2 a 2,3 a 62,3 a 360,4 a 35,9 a 27,0 a 5,2 a 6,5 a 2,6 a	19,4 a 348,8 a 36,2 a 29,6 a 6,1 a 6,2 a 2,3 a 2,2 a 62,3 a 360,4 a 35,9 a 27,0 a 5,2 a 6,5 a 2,6 a 2,5 a	19,4 a 348,8 a 36,2 a 29,6 a 6,1 a 6,2 a 2,3 a 2,2 a 14,9 a 62,3 a 360,4 a 35,9 a 27,0 a 5,2 a 6,5 a 2,6 a 2,5 a 17,7 a

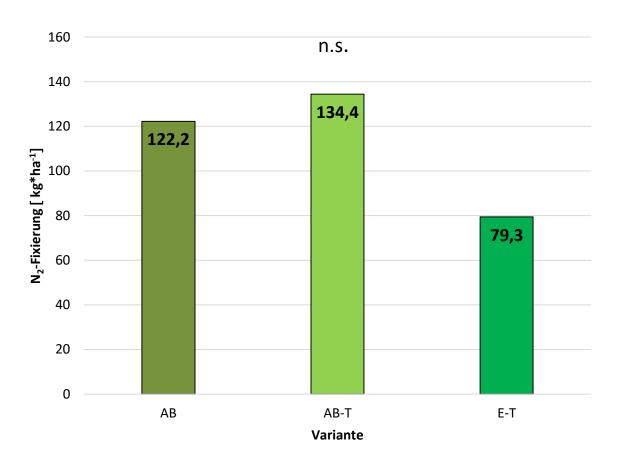
	TKG (g) Triebe*m ⁻²		e*m ⁻²	Hülsen	*Trieb ⁻¹	Körner*Hülse ⁻¹		KE (dt*ha ⁻¹)		
					Variante)				
Klasse	АВ	AB-T	АВ	АВ-Т	АВ	АВ-Т	АВ	AB-T	АВ	АВ-Т
1	319,4 a	348,8 a	36,2 a	29,6 a	6,1 a	6,2 a	2,3 a	2,2 a	14,9 a	14,0 a
2	362,3 a	360,4 a	35,9 a	27,0 a	5,2 a	6,5 a	2,6 a	2,5 a	17,7 a	15,2 a
3	324,4 a	343,6 a	36,3 a	28,3 a	6,4 a	7,4 a	2,6 a	2,5 a	19,0 a	17,9 a



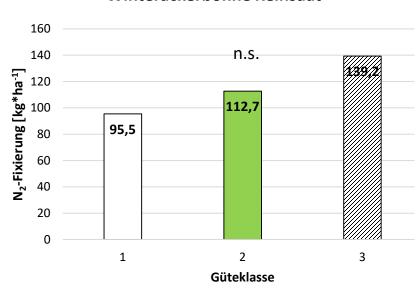
	тко	G (g)	Trieb	e*m ⁻²	Hülsen	*Trieb ⁻¹	Körner	*Hülse ⁻¹	KE (d	lt*ha ⁻¹)
Variante										
Klasse	АВ	AB-T	АВ	АВ-Т	АВ	АВ-Т	АВ	АВ-Т	АВ	АВ-Т
1	319,4 a	348,8 a	36,2 a	29,6 a	6,1 a	6,2 a	2,3 a	2,2 a	14,9 a	14,0 a
2	362,3 a	360,4 a	35,9 a	27,0 a	5,2 a	6,5 a	2,6 a	2,5 a	17,7 a	15,2 a
3	324,4 a	343,6 a	36,3 a	28,3 a	6,4 a	7,4 a	2,6 a	2,5 a	19,0 a	17,9 a

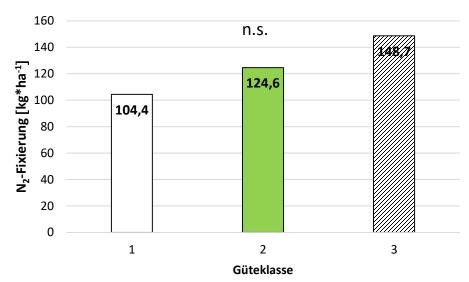
Kornertrag Parzellendrusch


Winterungen


Kornertrag Parzellendrusch

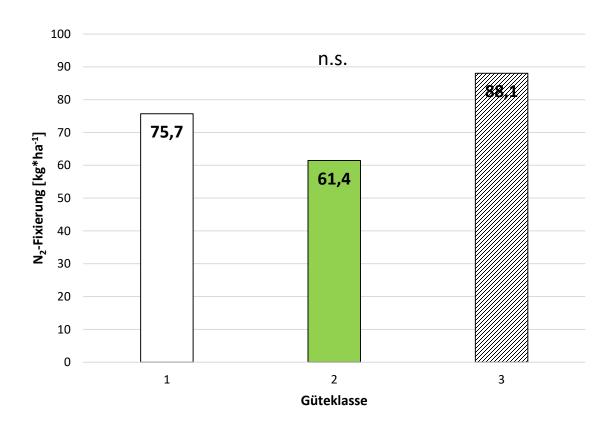
Sommerungen

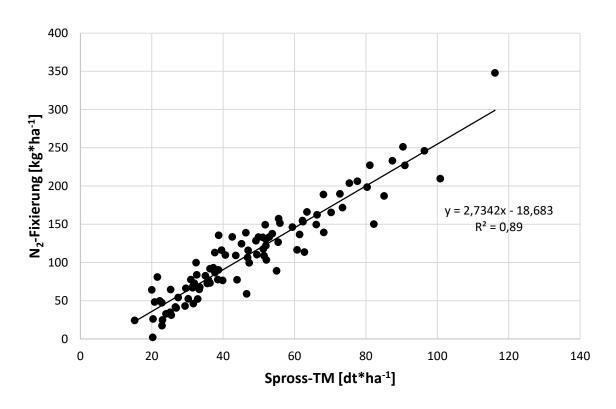

N₂-Fixierung



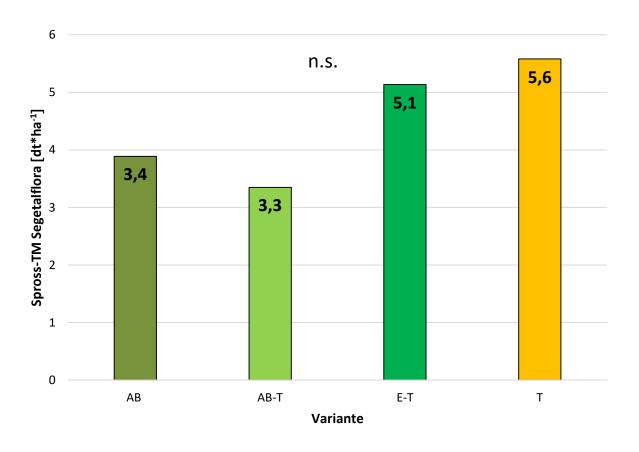
N₂-Fixierung nach Tiefgründigkeit des Bodens

Winterackerbohne Reinsaat


Winterackerbohne-Triticale

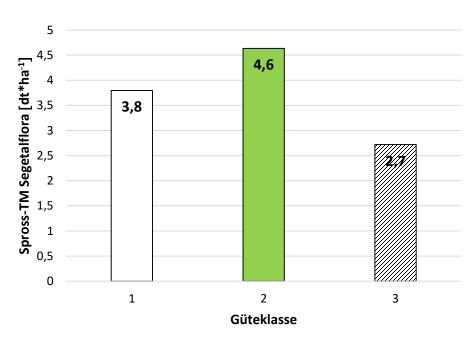

N₂-Fixierung nach Tiefgründigkeit des Bodens

Wintererbse-Triticale


Zusammenhang Spross-TM und N₂-Fixierung

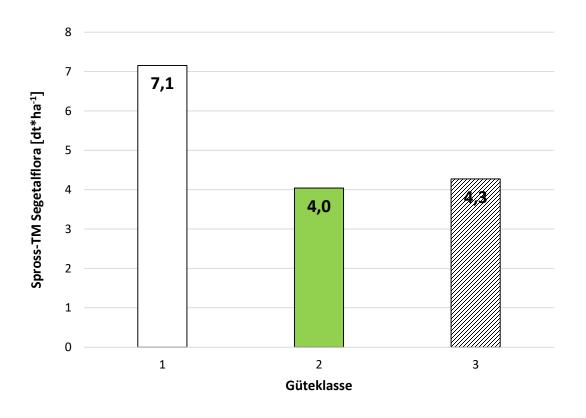
→ Stark positiv linearer Zusammenhang zwischen Spross-TM und N₂-Fixierung

Spross-TM der Segetalflora



Spross-TM der Segetalflora nach Tiefgründigkeit des Bodens

Winterackerbohne Reinsaat


Winterackerbohne-Triticale

Spross-TM der Segetalflora nach Tiefgründigkeit des Bodens

Wintererbse-Triticale

KONKURRENZ IN GEMENGEN

Unterschiedliche Konkurrenzsituationen in Winterackerbohnen-Triticale-Gemengen (Quelle: eigene Fotos).

ACKERBOHNEN REINSAAT

Gut entwickelte Ackerbohnen in Reinsaat (Quelle: eigenes Foto)

ACKERBOHNEN REINSAAT

Schlechte Etablierung von Ackerbohnen in Reinsaat (Quelle: eigenes Foto)

LAGERBILDUNG ERBSEN-TRITICALE

Winterkörnererbsen können selbst im Gemenge zu starkem Lager neigen (Quelle: eigene Fotos)

ZUSAMMENFASSUNG

- Spross-TM Erträge steigen mit Tiefgründigkeit des Bodens
- Kornertrag steigt mit Tiefgründigkeit
- Höhere Kornerträge in den Winterungen
- Gemengeanbau steigert N₂-Fixierung von Ackerbohnen
- N₂-Fixierungsleistung steigt mit Tiefgründigkeit
- positiver Zusammenhang zwischen Sprossmasse und N₂-Fixierung
- Spross-TM des Beikrautes sinkt mit Tiefgründigkeit
- geringste Beikrautmengen unter Ackerbohnen in Reinsaat und Gemenge

Vielen Dank für Ihre Aufmerksamkeit! Noch Fragen?

Institut fir Biologësch Landwirtschaft an Agrarkultur Luxemburg a.s.b.l.

13, rue Gabriel Lippmann L-5365 Munsbach

ANHANG

<u>Aussaatparameter</u>

Kultur	Parameter	Wintererbsen- Triticale	Winter- ackerbohne	Winter ackerbohne- Triticale	Triticale
Getreide	Saatstärke (Körner m ⁻²)	215		215	323
	Reihen	6		6	13
Leguminose	Staatsärke (Körner m ⁻²)	36	35	23	
	Reihen	7	7	7	
Allgemein	Reihenabstand (cm)	16	32	16	16

